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EVOLUTION OF A REGULAR PRECESSION OF A SOLID BODY 
CARRYING A VISCO-ELASTIC DISK* 

V.G. VIL'KE 

The motion of inertia is studied of a system consisting of an axisymmetric solid 
body with fixed point and a homogeneous visco-elastic disk lying in the equatorial 
plane of the ellipsoid of inertia of the solid body (the center of disk coincides 
with the fixed point). In the case of a solid disk immobilized relative to the 
solid body the system accomplishes a regular precession (the case of Euler motion 
of a symmetric solid body with a fixed point /l/). The deformation of the disk is 
taking place in the plane of the disk, and is accompanied by energy dissipation is 
the cause of the regular precession finishing by steady rotation about the vector 
of the moment of momentum of the system /2/. 

For defining the body position we use the Euler angles /l/. We introduce three systems 
of coordinates: system O&,& is fixed, system Oz,s$, is attached to the solid body (axis 02, 
is the axis of symmetry of the body), and the system Ozyz is obtained from the fixed system 
by two rotations by the Euler angles $I and 8. The disk is located in plane Oz,z, anddisplace- 
ments of its points, which are small, occurs in a plane O%% , and the stresses correspond to 
the plane stress state /3/. 

The equations of motion of the system are of the form /2/ 

J[u]o~+o~J[~]m+~(r+u)~[~~~+2m~u~]pdz=O 
P 

S {a’ x (r + u) + m x [to x (r + II)] + u” + 20 x II’) bup d.z + 
cl 

(VE[U]+VD[U'],&I) =O Vk E I', dz =dqdz, 

(1) 

where u(r,t) is the vector of displacement of elastic disk points, J[ul is the tensor of in- 
ertia of the system relative to the axes OzlzIzllr o is the angular velocity of rotation of the 
solid body,G is the region taken by the disk in the natural state, E ]ul,D [u'] are the function- 
als of potential energy of elastic deformation and dissipative forces, and pis the mass of 
unit area of the plate. Configuration of the system space is SO(3) x V, where SO(3)is the group 
of rotation of three-dimensional space, and V=(u:u. (Ws~(Q))*,u(O, t)= 0}, W(Q) is the Sobolev 
space. 

From Eqs.(l) follows the law of conservation of moment of momentum 

G =J[u]s++[(r+u) xu:lpd+ 
n 

(2) 

where vector Gis continuous and directed along axis Ogl. 
Let us obtain the approximate equations defining the evolution of regular precession of 

the solid body. We take the regular precession as the unperturbed motion when defining the 
disk deformation from the second of Eqs.(l). In that case [a'x(r+o)]du=O, sincethevectors 
appearing in the mixed product lie in the plane OZ+,. 

Suppose the conditions are valid /4,5/ 

I u I Q I r I. I Q I 4 ~1, D I4 = XE [ul (3) 

where v1 is the natural frequency of oscillation of the disk on a lower harmonic, and X is a 
constant. Conditions (3) allow us to neglect terms u"'and 2coX u' (the relative and the 
Coriolis accelerations in system O.QZ,.Q) in the second of Eqs.(l) and the problem of disk 
deformation may be regarded as a problem of quasi-statics 

(VD[u']+VE[u],h)= -1 [m x (0 x r)lWdz Vh=v (4) 
Q 
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whose solution we find in the form 

00 

u (r, r) = c k & (r. t) 
t-x) & 

-0 

(5) 

where ~r(?,j) is the solution of the variational equation of the plane problem of the theory 
of elasticity 

(VE[uol,k) =- S [O)x(mxr)]&updz Vb=V (6) 
P 

and satisfies the boundary conditions 

aa (0,:) = 0. o,Ir = 0, r = a9 = {(X1, 2,) : ZlZ + q’ = P) (7) 

The convergence of series (5) depends on xiQ.1. After centrifugal forces have been eli- 
minated in the right-hand side of Eq.(6) it becomes stationary in the coordinate system O+F, 
it assumes the form /3/ 

grad div &'+ ~Auo' = @.[m' x ((u' x r')] (8) 
h = (i - 5) (i + 0)-l, k = 2p (i - a) (Eh)-‘, r’ (~1). q’, O), d (0, Q,R +cp’) 

Q = 9. sin B, R = 0’ eos 8. P, [c’ x (a’ x r’)] = -[Q’ + (R + 
Q’)*l %‘e, - (R + Q’)*za’ey 

where the prime denotes vectors relative to the system of coordinates Ozyr, PI is the operator 
of projection on the plane Ozy, h is the disk thickness, Eand a are, respectively, the module 
of elasticity and the coefficient of Poisson of disk material, s, and e,, are the unit vectors 
of axes Oz and Oy. We obtain the solution of Eq.(8) in the form /5/ 

a0' = (%I%'* + %Z*" + Cl) +'e, + (a&*+ Cl*/= + cJz*'el# (9) 

Substituting (9) into (8) and (7), after transformation, we obtain the system of six 
linear algebraic equtions with constant coefficients o~,o~~,(I~~,o U, c,* =a* whose solution is 

uo'(r') = .g [r" - P (2 + ~~)]r + Dr', D = diag {d,, d,, 0) 

4 = (Bir’, r’) + gip i = 1, 2 

B1=k~diag(2+5~1,6+9pl.0), gl=k,(k*+44pI+2) 
B, = IcI diag(-6-3pL,, -2 + PI, 'J), g,= k, (PI' - 2) 

in W + ~‘1’ %SQ2 
g = - 8 (if Pl) ’ kl=- 4&y&) ’ ka = 16pl (I+ b) 

Since r’=A (t)r, where A(t) is the matrix for passing from the system of coordinates 
Oz,~~t to 42~~ hence 

ug (r, t) = A-'diag {(A-lB,Ar, r) + gI, (A-%Ar, r) + g,, 0) Ar + 
g (I* - p (2 + P&l r, A = ('t'ij), 

(10) 
yu = yn = cos Q 

AI = -‘ha = ain Q. Yaa = 1, Aa = Ya = -fan = -Cm = 0 

The series (5) is convergent when 4~ IQ’\ <i. Taking 4x.1 Q’I as fairly small, we restrict 
subsequently (5) to two firstterms, assuming 

u (r, t) = ~0 (r, t) - XUO' (r, t) 

Note that according to (10) and (11) function u(r,t) is of the form 

u (r, t) = v0 (r) + v, (r)(cos2~ + 2x~'sin 2~) + vs (r) (sin 2Q - 

2XQ"=2Q) + "'l(~)(='S 4Q + 4XQ'sin 4Q)+W,(r) (sill+- 4XQ’COs4Q) 

(11) 

(12) 

We substitute the displacement (12) in the first of Eqs.(l) and to integral (21, we 
average the obtained equation over the "rapid" time (over the angle Q) and find the approxi- 
mate equations defining the evolution of the evolution of the "slow" variables 8 and up'. From 
the first of Eqs.(l) we have 

JII tu1 P’ - Jll tu19 + (Jz‘* bl - J,, Id) 4’ + JI, Iul rp + 
Jll' bl P - J,,’ (ul q = 0 

(13) 

Jsa [ul r’ + (J4P [ul - Jll [UN PI - Jl, (ul (Pa - @) + 

J; [u] r + \ [(r + u) x II”] e$ dz = 0 
h 
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Where P,Q,~ are projections of vector o on the exes OX,Z,Z~, Jij[Ul are components of matrix 
of inertia of system relative to axes 02,x,x,. In conformity with (12) the quantities Jij IUI 
contain, besides constant terms sinuses and cosinuses 2n(p,n= 1,2,3,4. Moreover 

p = P coscp $ Q sincp, Q = -P sin cp + Qcoscp, r = R + cp' 
p’ = (P’ i- Qq’) cm cp + (Q’ - Pq’) sin cp, q’ = (Q’ - 

Pq’) cos ‘p - (P’ -I- Qq’) sin cp 

where P,Q, R are projections of angular velocity of the system of coordinates OZ~Z. From this 
follows that the first two of Eqs.(l3), when averaged with respect to angle cp, become ident- 
ically zero. When averaging the quantities Q, P, r,P’,Q’,r’ are assumed constants. Since ]u]<lr] 
and the derivative r'is small, we take the averaged value of J,, M equal to J,, IO] = C, + 1/,mza, 
where C1 is the moment of inertia of the solid body relative to the axis Oz,,m 1s the mass 
of disk, and 1 its radius. The two last terms of the third of Eqs.(13) vanish. Since ]PI< 
IQ], then, assuming P= Qsincp, q= Qcosrp, we obtain 

((Jna [n] - JJ~ [u])' 'AQB sin 2~ + J,, [II] Q'ws2cp) z'/~Q~ UI (14) 

Uij = viej, i, j = 1,2 

where< > denotes averaging operation over angle cp. 
The approximate equality in (14) indicates that in its right-hand side are omitted quad- 

ratic terms of vector components of displacements. As the result of computation of integral 
4, we obtain CD = (5/12) XI$Q*&'~~R-' 

After averaging the third of Eqs. (13), we obtain the approximate equation 

Cr' + kv’Q’ = 0, C = J,, ]O], k = 5124 x rnZ"~at~~-' (15) 

We write the moment of momentum (2) in the form 

(&I [u] P - Ju [u] qY + (Jzz [ul q - Jn [ul da + 

(Js&l]~+~[(r+u) x u']eapd~}*= C* 
n 

(16) 

Averaging over the angle 'p and limiting to the principal terms (actually it is necessary 
to set in (16) UZO)), we obtain 

A=Q'+ Cars= G', A =A, +l/,mla (17) 

where A, is the solid body moment of inertia relative to the axis 0~~. We use the relation 
cp'= r(A -C)IA,which is valid in the case of regular precession in the absence of extraneous 
forces, and from Eqs. (15) and (17) obtain 

y’ = uy (I - pp, ,, = kG’ FA; 4 , y = $ = cos 8 

Equation (18) defines evolution of angle 8. If A<C then n>O andlimy(t)= fi as 
t-co; depending on weather r(O) is greater or smaller than zero. With this angle 8 approach- 

es zero or n, i.e. the body tends to rotate about the axis of symmetry. For A >C we have 
n<O and limy(t)=O for t-co. This means that lime (t)=%s and I-_*-, the body approaches 
steady rotation about one of the diameters belonging to the equatorial plane of the ellipsoid 
of inertia. 

Equation (18) has three steady solutions Y=O and v=fl. The solution Y = 0 (e = '/an) 
is stable for A >C and unstable for A <C, while solution y = zbi (f3 = 0,n) is stable for 
A <C and unstable for A >C. 

The angular velocity of precession $,'= CA-' remains constant in the evolution of motion, 
and y (t) is given implicitly by the relation In [(I- y*)y-*J-y* (1 - 7)-l = - 2nr$ In l(i - y* (0)) y-* (O)] - 
Y * (0) (i - vB) (O))_! 
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