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EVOLUTION OF A REGULAR PRECESSION OF A SOLID BODY
CARRYING A VISCO-ELASTIC DISK”

V.G. VIL'KE

The motion of inertia is studied of a system consisting of an axisymmetric solid
body with fixed point and a homogeneous visco-elastic disk lying in the equatorial
plane of the ellipsoid of inertia of the solid body (the center of disk coincides
with the fixed point). 1In the case of a solid disk immobilized relative to the
solid body the system accomplishes a regular precession (the case of Euler motion
of a symmetric solid body with a fixed point /1/). The deformation of the disk is
taking place in the plane of the disk, and is accompanied by energy dissipation is
the cause of the regular precession finishing by steady rotation about the vector
of the moment of momentum of the system /2/.

For defining the body position we use the Euler angles /1/. We introduce three systems
of coordinates: system O§E%; is fixed, system Onzws is attached to the solid body (axis Oz,
is the axis of symmetry of the body), and the system Ozyz is obtained from the fixed system
by two rotations by the Euler angles ¢ and 8. The disk is located in plane Oz, and displace-
ments of its points, which are small, occurs in a plane Oxaz,, and the stresses correspond to
the plane stress state /3/.

The equations of motion of the system are of the form /2/

Jule' +exJ e+ {E+u)x [+ 20 x wlpds =0 (1)
Q

(@ xE+w+oxoxE+w+u +20 x u}supds +
Q
(VE[u] + VD [u],du) =0 VdueV, dz=ds ds

where wu(r,? is the vector of displacement of elastic disk points, J[u] is the tensor of in-
ertia of the system relative to the axes Oz, @ is the angular velocity of rotation of the
solid body, 2 is the region taken by the disk in the natural state, E[u], D [w] are the function-
als of potential energy of elastic deformation and dissipative forces, and p is the mass of
unit area of the plate. Configuration of the system space is S0 (3) X ¥V, where SO (3)is the group
of rotation of three-dimensional space, and V= {u:u. (W' (R) 2 u(0, 1) =0}, W (@) is the Sobolev
space.

From Egs. (1) follows the law of conservation of moment of momentum

6 =Julo+{(F+u) xulpdz (2)
Q

where vector G is continuous and directed along axis Og;.

Let us obtain the approximate equations defining the evolution of regular precession of
the solid body. We take the regular precession as the unperturbed motion when defining the
disk deformation from the second of Egs.{(l). In that case {@'X(r+ u)]du =0, since the vectors
appearing in the mixed product lie in the plane Ozz,.

Suppose the conditions are valid /4,5/

lu| €lel, |of €%, Dul=1E[ul (3)
where v is the natural frequency of oscillation of the disk on a lower harmonic, and ¥ is a
constant. Conditions (3) allow us to neglect terms u”“and 20 Xw (the relative and the

Coriolis accelerations in system Onze,) in the second of Egs. (1) and the problem of disk
deformation may be regarded as a problem of quasi-statics

(VD[] + VE[u], du) = _S [© X (@ X 1)] dupdz VoueV (4)
Q
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whose solution we find in the form

X
aey= Y, nF-mnd (5)

=0
where W (r, ¢ is the solution of the variational equation of the plane problem of the theory
of elasticity

(VE[u.,].Gu)=—-S [0 X (@ X 1))dupdz VéueV (6)
Q

and satisfies the boundary conditions
U (0,)=0, oxfp=0, T=3dR={(z,2):0°+ 2" =P} (7)

The convergence of series (5) depends on %|¢’|. After centrifugal forces have been eli-
minated in the right-hand side of Eg.(6) it becomes stationary in the coordinate system Oazys,
it assumes the form /3/

grad div wy’ + pAuy = p Py [0 X (0 X r')]
P=({1—0)(1+0), py=2p(1—0)(ER™ ¥ (21,27, 0), @' (0, QR +9’)
Q=v'8in0, R=1v cosb, Pylo’ X (@ X )= —[Q*+ (R +

PPl zex — (R + @) z/ey

(8)

where the prime denotes vectors relative to the system of coordinates Ozys, Py is the operator
of projection on the plane 0zy, & is the disk thickness, E and ¢ are, respectively, the module
of elasticity and the coefficient of Poisson of disk material, e, and ¢ are the unit vectors
of axes Oz and Oy. We obtain the solution of Eg.(8) in the form /5/

W' = (2" + a7 4 o) 2y + (G + Gy’ -+ cg)zy'ey (9)

Substituting (9) into (8) and (7), after transformation, we obtain the system of six
linear algebraic equtions with constant coefficients ay, aj4, a3, ¢4, ¢, ¢35, Whose solution is

u'(r') =g [r'* — P (2 + pw)Ir' + Dr', D = disg {d,, d5, 0}

di= (Bir', ')+ gi, i=1,2

By = ky diag {2 + 5py, 6 -+ 9py, 0}, g1 = kg (* + 4 + 2

By = k diag {—6—3p;, —2+ p1, O}, g3 = K (a® — 2)

_ _Ma(Bt o) e — [ P IpgQ?
8 +m) * ™ B (ltp) * 7T 161+ w)

Since r=A()r, where 4 () is the matrix for passing from the system of coordinates
Oz,7,73 tO Qazys, hence

up (r, &) = A7ldiag {(A7'Bi4r, 1)+ g, (A71BAr, 1) + gy, 0} Ar +
g — B+ pllr, 4 =(Vij), Y= Vaa=c08 ¢
= Vi =8DQ, V=1, Vs =Vn=Vsa=Vs =0

(10)

The series (5) is convergent when 4yxle’| <1. Taking 4y|¢'| as fairly small, we restrict
subsequently (5) to two first terms, assuming

u(r, 8 =uo(r, ) — xuo (r, 9 (11)
Note that according to (10) and (11l) function u(r, ¢ is of the form
u(r, #) = vo(r) + v, (r) (cos 29 + 2x9" sin 2¢) + v, (r) (sin 29 — (12)

2x@" cos2@) + Wy (r) (cos 49 + 4x¢’ sin 4@) + Wy (r) (sin 49 — 4x@° cos 4¢)

We substitute the displacement (12) in the first of Egs.(l) and to integral (2}, we
average the obtained equation over the "rapid" time (over the angle ¢) and find the approxi-
mate equations defining the evolution of the evolution of the "slow" variables 6 and . From
the first of Egs. (1) we have

Ju [l p" — Jis [ulg’ 4 (J53 (] — Jg [u]) gr + Jyg [ul rp + (13)
Ju'fulp —Jyy' lulg=0

Janlul ¢" — Jyg [u] p° + (Jyy [u] — Jgg [u]) pr — Jyg [l rg — Jyy" [u]l p +
Jog lulg =0

Jss [u] r* 4 (Jgg [u] — J11 [u]) pg — Jyg [u] (p? — &%) +

J:;s [“]"'{-S [r +u) X ulespdz =0
Q
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Where p,q,r are projections of vector @ on the axes Oz, Jij[ul are components of matrix
of inertia of system relative to axes Oxzz;. In conformity with (12) the quantities Ji[ul
contain, besides constant terms sinuses and cosinuses 2np,n=1,2,3,4 Moreover

p=~Pcosp+ Qsing, ¢g= —Psing+ Qcosg, r=R+ ¢
p=(P "+ Q@) cosp+ (Q — Pg)sing, ¢ =(Q —
Pg’)cos ¢ — (P'+ Q9) sin g

where P,Q,R are projections of angular velocity of the system of coordinates Ozyz. From this
follows that the first two of Egs. (13), when averaged with respect to angle ¢ , become ident-
ically zero. When averaging the quantities Q, P, r, P',Q', r are assumed constants. Since |u|<|r]
and the derivative r'is small, we take the averaged value of Jslul equal to Ju5 (0] = €, + Y,mi2,
where ¢, is the moment of inertia of the solid body relative to the axis Oz, m 1is the mass
of disk, and ! its radius. The two last terms of the third of Eqgs. (13) vanish. Since |[P|<Z
1Ql, then, assuming p=Qsing, ¢= Qcosp, we obtain

W [ul — Jyy [ul)" 1,Q% sin 2¢ -+ J, [u] Q? cos 29> = 1/,Q* D (14)
25
D = S [#1 (12 +vn) + 23 (o0 — v pdz, (> = %S (-)dg;
9 °
Vi =V b i=1,2

where ¢ ) denotes averaging operation over angle o.
The approximate equality in (14) indicates that in its right-hand side are omitted quad-
ratic terms of vector components of displacements. As the result of computation of integral

@® we obtain D = (5/12) 19 Q*mlbpym~t

After averaging the third of Egs. (13), we obtain the approximate equation
Cr' + ko' Q= 0, C = J45 (0], k = 5/24 x mBpsp,? (15)

We write the moment of momentum (2) in the form

(S [u] p — J1s[u] 9)% 4 (Jo () q—-’ﬂm[“] PR+ (16)
{J,,, [u]r+S[(r+u) % u']espd.:} —G
Q

Averaging over the angle ¢ and limiting to the principal terms (actually it is necessary
to set in (16) uw=0)), we obtain

A3QF 4 €32 = G A = Ay + Yymit (17)

where A4, is the solid body moment of inertia relative to the axis 0z,. We use the relation
9"=r(4d — C)/A,which is valid in the case of regular precession in the absence of extraneous
forces, and from Egs. (15) and (17) obtain

. kG4(G— A C
T =ny(l—y33, n=—%. v=Tr=cose (18)

Equation (18) defines evolution of angle 8. If A<C then n>0 andlimy(f= 1 as
t— o0 ; depending on weather 7y (0) is greater or smaller than zero. With this angle © approach-
es zero or n, i.e. the body tends to rotate about the axis of symmetry. For 4 >C we have
n<0 and limy (=0 for t—ro. This means that lim @ (¢ =% and ¢— o, the body approaches
steady rotation about one of the diameters belonging to the equatorial plane of the ellipsoid
of inertia.

Equation (18) has three steady solutions y=0 and y= %1 The solution vy =0(8 =1 n)
is stable for A >C and unstable for 4 < C, while solution y=+1(®=0,n) is stable for
A < € and unstable for 4 >C.

The angular velocity of precession ¥ = 647! remains constant in the evolution of motion,
and v (#) is given implicitly by the relation In[(1— 8y 2 —v* (1 — ¥ =— 2ne¢+ In [(1 — 32 (0)) y2 (0)] —
Y2 0) (1 — %) (O
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